HOME > 書籍紹介 > プログラミング >  書籍詳細

作ってわかる! アンサンブル学習アルゴリズム入門

本書は、LightGBMやXGBoostなどに代表されるアンサンブル学習のアルゴリズムをPython 3でゼロから実装することで、その仕組みや原理を学べる1冊です。


<序文より抜粋>
ビッグデータを解析するための機械学習アルゴリズムとしては、ディープラーニング、つまりニューラルネットワークの他にも、ベイズ分類器や決定木、それにそれらを組み合わせた「アンサンブル学習」アルゴリズムなど、さまざまな種類があり、データやその利用シーンに応じて適切なものを選択しなければ、その威力を発揮させることはできません。実際、海外のデータコンペティションにおいてはLightGBMなどのアルゴリズムがよく利用されますが、それは勾配ブースティングアルゴリズムの一種であり、「アンサンブル学習」アルゴリズムの1つです。
そうした「アンサンブル学習」アルゴリズムは強力な分析力を提供してくれますが、それらを正しく使いこなし、最大限の性能を引き出すためには、アルゴリズムの詳細についての理解が欠かせません。そして、どのようなアルゴリズムについても、その手法を最もよく理解できる学習手段は、そのアルゴリズムを実際に一からプログラミングしてみることなのです。
そうした「アンサンブル学習」と呼ばれる手法について、最も基礎的な部分から解説し、実際にコードを作成しながらその動作原理を学ぶ、というの本書の目的となります。
そして本書では、Python言語を使用して、複数のアンサンブル学習アルゴリズムを、完全に一からスクラッチで制作します。数式でアルゴリズムを理解するのではなく、実際に一からプログラムを書き、コードに触れることで得られる知識は、実際のデータ解析における問題解決能力を大きく養ってくれるはずです。

 

商品名:
作ってわかる! アンサンブル学習アルゴリズム入門NEW!

 

価格:3,420円+税
ISBNコード:978-4-86354-280-8
本のサイズ:A5判/ソフトカバー
著者:坂本 俊之

目次

CHAPTER 01 アンサンブル学習の基礎知識
CHAPTER 02 機械学習プログラミングの準備
CHAPTER 03 線形回帰と確率的勾配降下法
CHAPTER 04 決定木アルゴリズム
CHAPTER 05 プルーニング
CHAPTER 06 バギング
CHAPTER 07 AdaBoost
CHAPTER 08 改良AdaBoost
CHAPTER 09 勾配ブースティング
CHAPTER 10 その他のアンサンブル手法

著者紹介

●坂本 俊之(さかもと としゆき)
機械学習エンジニア・兼・AIコンサルタント
現在はAIを使用した業務改善コンサルティングや、AIシステムの設計・実装支援などを行う。

担当編集者から

本書ではスクラッチでアンサンブル学習のアルゴリズムを実装することで、その仕組や原理が学べる1冊です。ぜひ、内容をご確認ください。(吉成)

こちらの書籍も好評発売中!